Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-11 of 11
Vincent Walsh
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (11): 2174–2185.
Published: 01 November 2015
FIGURES
| View All (4)
Abstract
View article
PDF
One of the multiple interacting systems involved in the selection and execution of voluntary actions is the primary motor cortex (PMC). We aimed to investigate whether the transcranial direct current stimulation (tDCS) of this area can modulate hand choice. A perceptual decision-making task was administered. Participants were asked to classify rectangles with different height-to-width ratios into horizontal and vertical rectangles using their right and left index fingers while their PMC was stimulated either bilaterally or unilaterally. Two experiments were conducted with different stimulation conditions: the first experiment ( n = 12) had only one stimulation condition (bilateral stimulation), and the second experiment ( n = 45) had three stimulation conditions (bilateral, anodal unilateral, and cathodal unilateral stimulations). The second experiment was designed to confirm the results of the first experiment and to further investigate the effects of anodal and cathodal stimulations alone in the observed effects. Each participant took part in two sessions. The laterality of stimulation was reversed over the two sessions. Our results showed that anodal stimulation of the PMC biases participants' responses toward using the contralateral hand whereas cathodal stimulation biases responses toward the ipsilateral hand. Brain stimulation also modulated the RT of the left hand in all stimulation conditions: Responses were faster when the response bias was in favor of the left hand and slower when the response bias was against it. We propose two possible explanations for these findings: the perceptual bias account (bottom–up effects of stimulation on perception) and the motor-choice bias account (top–down modulation of the decision-making system by facilitation of response in one hand over the other). We conclude that motor responses and the choice of hand can be modulated using tDCS.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (8): 1685–1693.
Published: 01 August 2014
FIGURES
Abstract
View article
PDF
The ability to estimate durations varies across individuals. Although previous studies have reported that individual differences in perceptual skills and cognitive capacities are reflected in brain structures, it remains unknown whether timing abilities are also reflected in the brain anatomy. Here, we show that individual differences in the ability to estimate subsecond and suprasecond durations correlate with gray matter (GM) volume in different parts of cortical and subcortical areas. Better ability to discriminate subsecond durations was associated with a larger GM volume in the bilateral anterior cerebellum, whereas better performance in estimating the suprasecond range was associated with a smaller GM volume in the inferior parietal lobule. These results indicate that regional GM volume is predictive of an individual's timing abilities. These morphological results support the notion that subsecond durations are processed in the motor system, whereas suprasecond durations are processed in the parietal cortex by utilizing the capacity of attention and working memory to keep track of time.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (6): 1305–1313.
Published: 01 June 2012
FIGURES
Abstract
View article
PDF
In the Simon task, a conflict arises because irrelevant spatial information competes for response selection either facilitating or interfering with performance. Responses are faster when stimulus and response position correspond than when they do not. The FEFs, which have long been characterized for their role in oculomotor control, are also involved in the control of visuospatial attention when eye movements are not required. This study was aimed at investigating whether the FEFs contribute to spatial conflict. Double-pulse TMS was applied to the FEF of either left or right hemisphere during the execution of a Simon task at different time windows after the onset of the visual stimulus. A suppression of the Simon effect was observed after stimulation of the FEF for stimuli appearing in the contralateral hemifield when TMS was applied to the left hemisphere after stimulus onset (0–40 and 40–80 msec). A reduction of the correspondence effect was observed after right FEF TMS for stimuli presented in the left visual hemifield when stimulation was delivered in the 80–120 msec range after stimulus onset. These outcomes indicate that the FEF play a critical role in encoding spatial attribute of a stimulus for response priming, which is the prerequisite for response conflict in the Simon task. Moreover, our finding that the left FEF have a dominant role during spatial conflict extends the idea of the left-hemisphere lateralization of the motor network in action selection by suggesting that the FEF may constitute part of this network.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (4): 896–904.
Published: 01 April 2012
FIGURES
Abstract
View article
PDF
Using MRI-guided off-line TMS, we targeted two areas implicated in biological motion processing: ventral premotor cortex (PMC) and posterior STS (pSTS), plus a control site (vertex). Participants performed a detection task on noise-masked point-light displays of human animations and scrambled versions of the same stimuli. Perceptual thresholds were determined individually. Performance was measured before and after 20 sec of continuous theta burst stimulation of PMC, pSTS, and control (each tested on different days). A matched nonbiological object motion task (detecting point-light displays of translating polygons) served as a further control. Data were analyzed within the signal detection framework. Sensitivity ( d ′) significantly decreased after TMS of PMC. There was a marginally significant decline in d ′ after TMS of pSTS but not of control site. Criterion (response bias) was also significantly affected by TMS over PMC. Specifically, subjects made significantly more false alarms post-TMS of PMC. These effects were specific to biological motion and not found for the nonbiological control task. To summarize, we report that TMS over PMC reduces sensitivity to biological motion perception. Furthermore, pSTS and PMC may have distinct roles in biological motion processing as behavioral performance differs following TMS in each area. Only TMS over PMC led to a significant increase in false alarms, which was not found for other brain areas or for the control task. TMS of PMC may have interfered with refining judgments about biological motion perception, possibly because access to the perceiver's own motor representations was compromised.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (2): 207–221.
Published: 01 February 2009
Abstract
View article
PDF
Transcranial magnetic stimulation (TMS) is a tool for inducing transient disruptions of neural activity noninvasively in conscious human volunteers. In recent years, the investigative domain of TMS has expanded and now encompasses causal structure–function relationships across the whole gamut of cognitive functions and associated cortical brain regions. Consequently, the importance of how to determine the target stimulation site has increased and a number of alternative methods have emerged. Comparison across studies is precluded because different studies necessarily use different tasks, sites, TMS conditions, and have different goals. Here, therefore, we systematically compare four commonly used TMS coil positioning approaches by using them to induce behavioral change in a single cognitive study. Specifically, we investigated the behavioral impact of right parietal TMS during a number comparison task, while basing TMS localization either on (i) individual fMRI-guided TMS neuronavigation, (ii) individual MRI-guided TMS neuronavigation, (iii) group functional Talairach coordinates, or (iv) 10–20 EEG position P4. We quantified the exact behavioral effects induced by TMS using each approach, calculated the standardized experimental effect sizes, and conducted a statistical power analysis in order to calculate the optimal sample size required to reveal statistical significance. Our findings revealed a systematic difference between the four approaches, with the individual fMRI-guided TMS neuronavigation yielding the strongest and the P4 stimulation approach yielding the smallest behavioral effect size. Accordingly, power analyses revealed that although in the fMRI-guided neuronavigation approach five participants were sufficient to reveal a significant behavioral effect, the number of necessary participants increased to n = 9 when employing MRI-guided neuronavigation, to n = 13 in case of TMS based on group Talairach coordinates, and to n = 47 when applying TMS over P4. We discuss these graded effect size differences in light of the revealed interindividual variances in the actual target stimulation site within and between approaches.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (6): 1054–1062.
Published: 01 June 2008
Abstract
View article
PDF
The recent upsurge of interest in brain mechanisms of time perception is beginning to converge on some new starting points for investigating this long under studied aspect of our experience. In four experiments, we asked whether disruption of normal activity in human MT/V5 would interfere with temporal discrimination. Although clearly associated with both spatial and motion processing, MT/V5 has not yet been implicated in temporal processes. Following predictions from brain imaging studies that have shown the parietal cortex to be important in human time perception, we also asked whether disruption of either the left or right parietal cortex would interfere with time perception preferentially in the auditory or visual domain. The results show that the right posterior parietal cortex is important for timing of auditory and visual stimuli and that MT/V5 is necessary for timing only of visual events.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (2): 204–214.
Published: 01 February 2008
Abstract
View article
PDF
In everyday life, temporal information is used for both perception and action, but whether these two functions reflect the operation of similar or different neural circuits is unclear. We used functional magnetic resonance imaging to investigate the neural correlates of processing temporal information when either a motor or a perceptual representation is used. Participants viewed two identical sequences of visual stimuli and used the information differently to perform either a temporal reproduction or a temporal estimation task. By comparing brain activity evoked by these tasks and control conditions, we explored commonalities and differences in brain areas involved in reproduction and estimation of temporal intervals. The basal ganglia and the cerebellum were commonly active in both temporal tasks, consistent with suggestions that perception and production of time are subserved by the same mechanisms. However, only in the reproduction task was activity observed in a wider cortical network including the right pre-SMA, left middle frontal gyrus, left premotor cortex, with a more reliable activity in the right inferior parietal cortex, left fusiform gyrus, and the right extrastriate visual area V5/MT. Our findings point to a role for the parietal cortex as an interface between sensory and motor processes and suggest that it may be a key node in translation of temporal information into action. Furthermore, we discuss the potential importance of the extrastriate cortex in processing visual time in the context of recent findings.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (2): 403–414.
Published: 01 February 2008
Abstract
View article
PDF
Transcranial magnetic stimulation (TMS) over the left hemisphere has been shown to disrupt semantic processing but, to date, there has been no direct demonstration of the electrophysiological correlates of this interference. To gain insight into the neural basis of semantic systems, and in particular, study the temporal and functional organization of object categorization processing, we combined repetitive TMS (rTMS) and ERPs. Healthy volunteers performed a picture–word matching task in which Snodgrass drawings of natural (e.g., animal) and artifactual (e.g., tool) categories were associated with a word. When short trains of high-frequency rTMS were applied over Wernicke's area (in the region of the CP5 electrode) immediately before the stimulus onset, we observed delayed response times to artifactual items, and thus, an increased dissociation between natural and artifactual domains. This behavioral effect had a direct ERP correlate. In the response period, the stimuli from the natural domain elicited a significant larger late positivity complex than those from the artifactual domain. These differences were significant over the centro-parietal region of the right hemisphere. These findings demonstrate that rTMS interferes with postperceptual categorization processing of natural and artifactual stimuli that involve separate subsystems in distinct cortical areas.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (7): 1140–1151.
Published: 01 July 2007
Abstract
View article
PDF
“Priming of pop-out” is a form of implicit memory that facilitates detection of a recently inspected search target. Repeated presentation of a target's features or its spatial position improves detection speed (feature/spatial priming). This study investigated a role for the human frontal eye fields (FEFs) in the priming of color pop-out. To test the hypothesis that the FEFs play a role in short-term memory storage, transcranial magnetic stimulation (TMS) was applied during the intertrial interval. There was no effect of TMS on either spatial or feature priming. To test whether the FEFs are important when a saccade is being programmed to a repeated target color or location, TMS was applied during the search array. TMS over the left but not the right FEFs abolished spatial priming, but had no effect on feature priming. These findings demonstrate functional specialization of the left FEFs for spatial priming, and distinguish this role from target discrimination and saccade-related processes. The results suggest that the left FEFs integrate a spatial memory signal with an evolving saccade program, which facilitates saccades to a recently inspected location.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (6): 1060–1067.
Published: 01 July 2004
Abstract
View article
PDF
Frontal eye field (FEF) neurons discharge in response to behaviorally relevant stimuli that are potential targets for saccades. Distinct visual and motor processes have been dissociated in the FEF of macaque monkeys, but little is known about the visual processing capacity of FEF in humans. We used double-pulse transcranial magnetic stimulation [(d)TMS] to investigate the timing of target discrimination during visual conjunction search. We applied dual TMS pulses separated by 40 msec over the right FEF and vertex. These were applied in five timing conditions to sample separate time windows within the first 200 msec of visual processing. (d)TMS impaired search performance, reflected in reduced d′ scores. This effect was limited to a time window between 40 and 80 msec after search array onset. These parameters correspond with single-cell activity in FEF that predicts monkeys' behavioral reports on hit, miss, false alarm, and correct rejection trials. Our findings demonstrate a crucial early role for human FEF in visual target discrimination that is independent of saccade programming.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (3): 354–363.
Published: 01 April 2003
Abstract
View article
PDF
The split-fovea theory proposes that visual word recognition is mediated by the splitting of the foveal image, with letters to the left of fixation projected to the right hemisphere (RH) and letters to the right of fixation projected to the left hemisphere (LH). We applied repetitive transcranial magnetic stimulation (rTMS) over the left and right occipital cortex during a lexical decision task to investigate the extent to which word recognition processes could be accounted for according to the split-fovea theory. Unilateral rTMS significantly impaired lexical decision latencies to centrally presented words, supporting the suggestion that foveal representation of words is split between the cerebral hemispheres rather than bilateral. Behaviorally, we showed that words that have many orthographic neighbors sharing the same initial letters (“lead neighbors”) facilitated lexical decision more than words with few lead neighbors. This effect did not apply to end neighbors (orthographic neighbors sharing the same final letters). Crucially, rTMS over the RH impaired lead-, but not end-neighborhood facilitation. The results support the split-fovea theory, where the RH has primacy in representing lead neighbors of a written word.