Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Vincenzo Romei
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (4): 602–613.
Published: 01 April 2024
FIGURES
| View All (4)
Abstract
View article
PDF
Brain oscillatory activity within the alpha band has been associated with a wide range of processes encompassing perception, memory, decision-making, and overall cognitive functioning. Individual alpha frequency (IAF) is a specific parameter accounting for the mean velocity of the alpha cycling activity, conventionally ranging between ∼7 and ∼13 Hz. One influential hypothesis has proposed a fundamental role of this cycling activity in the segmentation of sensory input and in the regulation of the speed of sensory processing, with faster alpha oscillations resulting in greater temporal resolution and more refined perceptual experience. However, although several recent theoretical and empirical studies would support this account, contradictory evidence suggests caution and more systematic approaches in the assessment and interpretation of this hypothesis. For example, it remains to be explored to what degree IAF shapes perceptual outcomes. In the present study, we investigated whether inter-individual differences in bias-free visual contrast detection threshold in a large sample of individuals in the general population ( n = 122) could be explained by inter-individual differences in alpha pace. Our results show that the contrast needed to correctly identify target stimuli (individual perceptual threshold) is associated with alpha peak frequency (not amplitude). Specifically, individuals who require reduced contrast show higher IAF than individuals requiring higher contrasts. This suggests that inter-individual differences in alpha frequency contribute to performance variability in low-level perceptual tasks, supporting the hypothesis that IAF underlies a fundamental temporal sampling mechanism that shapes visual objective performance, with higher frequencies promoting enhanced sensory evidence per time unit.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (4): 640–654.
Published: 01 April 2024
FIGURES
Abstract
View article
PDF
Temporal windows in perception refer to windows of time within which distinct stimuli interact to influence perception. A simple example is two temporally proximal stimuli fusing into a single percept. It has long been hypothesized that the human alpha rhythm (an 8- to 13-Hz neural oscillation maximal over posterior cortex) is linked to temporal windows, with higher frequencies corresponding to shorter windows and finer-grained temporal resolution. This hypothesis has garnered support from studies demonstrating a correlation between individual differences in alpha-band frequency (IAF) and behavioral measures of temporal processing. However, nonsignificant effects have also been reported. Here, we review and meta-analyze 27 experiments correlating IAF with measures of visual and audiovisual temporal processing. Our results estimate the true correlation in the population to be between .39 and .53, a medium-to-large effect. The effect held when considering visual or audiovisual experiments separately, when examining different IAF estimation protocols (i.e., eyes open and eyes closed), and when using analysis choices that favor a null result. Our review shows that (1) effects have been internally and independently replicated, (2) several positive effects are based on larger sample sizes than the null effects, and (3) many reported null effects are actually in the direction predicted by the hypothesis. A free interactive web app was developed to allow users to replicate our meta-analysis and change or update the study selection at will, making this a “living” meta-analysis ( randfxmeta.streamlit.app ). We discuss possible factors underlying null reports, design recommendations, and open questions for future research.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (4): 567–571.
Published: 01 April 2024
Abstract
View article
PDF
For decades, the intriguing connection between the human alpha rhythm (an 8- to 13-Hz oscillation maximal over posterior cortex) and temporal processes in perception has furnished a rich landscape of proposals. The past decade, however, has seen a surge in interest in the topic, bringing new theoretical, analytic, and methodological developments alongside fresh controversies. This Special Focus on alpha-band dynamics and temporal processing provides an up-to-date snapshot of the playing field, with contributions from leading researchers in the field spanning original perspectives, new evidence, comprehensive reviews and meta-analyses, as well as discussion of ongoing controversies and paths forward. We hope that the perspectives captured here will help catalyze future research and shape the pathways toward a theoretically grounded and mechanistic account of the link between alpha dynamics and temporal properties of perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (1): 1–11.
Published: 01 January 2020
FIGURES
| View All (5)
Abstract
View article
PDF
Temporal encoding is a key feature in multisensory processing that leads to the integration versus segregation of perceived events over time. Whether or not two events presented at different offsets are perceived as simultaneous varies widely across the general population. Such tolerance to temporal delays is known as the temporal binding window (TBW). It has been recently suggested that individual oscillatory alpha frequency (IAF) peak may represent the electrophysiological correlate of TBW, with IAF also showing a wide variability in the general population (8–12 Hz). In our work, we directly tested this hypothesis by measuring each individual's TBW during a visuotactile simultaneity judgment task while concurrently recording their electrophysiological activity. We found that the individual's TBW significantly correlated with their left parietal IAF, such that faster IAF accounted for narrower TBW. Furthermore, we found that higher prestimulus alpha power measured over the same left parietal regions accounted for more veridical responses of non-simultaneity, which may be explained either by accuracy in perceptual simultaneity or, alternatively, in line with recent proposals by a shift in response bias from more conservative (high alpha power) to more liberal (low alpha power). We propose that the length of an alpha cycle constrains the temporal resolution within which perceptual processes take place.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (7): 1122–1135.
Published: 01 July 2013
FIGURES
| View All (4)
Abstract
View article
PDF
Approaching or looming sounds (L-sounds) have been shown to selectively increase visual cortex excitability [Romei, V., Murray, M. M., Cappe, C., & Thut, G. Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Current Biology, 19, 1799–1805, 2009]. These cross-modal effects start at an early, preperceptual stage of sound processing and persist with increasing sound duration. Here, we identified individual factors contributing to cross-modal effects on visual cortex excitability and studied the persistence of effects after sound offset. To this end, we probed the impact of different L-sound velocities on phosphene perception postsound as a function of individual auditory versus visual preference/dominance using single-pulse TMS over the occipital pole. We found that the boosting of phosphene perception by L-sounds continued for several tens of milliseconds after the end of the L-sound and was temporally sensitive to different L-sound profiles (velocities). In addition, we found that this depended on an individual's preferred sensory modality (auditory vs. visual) as determined through a divided attention task (attentional preference), but not on their simple threshold detection level per sensory modality. Whereas individuals with “visual preference” showed enhanced phosphene perception irrespective of L-sound velocity, those with “auditory preference” showed differential peaks in phosphene perception whose delays after sound-offset followed the different L-sound velocity profiles. These novel findings suggest that looming signals modulate visual cortex excitability beyond sound duration possibly to support prompt identification and reaction to potentially dangerous approaching objects. The observed interindividual differences favor the idea that unlike early effects this late L-sound impact on visual cortex excitability is influenced by cross-modal attentional mechanisms rather than low-level sensory processes.