Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Viola S. Störmer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (5): 902–918.
Published: 01 April 2021
FIGURES
| View All (5)
Abstract
View article
PDF
Almost all models of visual working memory—the cognitive system that holds visual information in an active state—assume it has a fixed capacity: Some models propose a limit of three to four objects, where others propose there is a fixed pool of resources for each basic visual feature. Recent findings, however, suggest that memory performance is improved for real-world objects. What supports these increases in capacity? Here, we test whether the meaningfulness of a stimulus alone influences working memory capacity while controlling for visual complexity and directly assessing the active component of working memory using EEG. Participants remembered ambiguous stimuli that could either be perceived as a face or as meaningless shapes. Participants had higher performance and increased neural delay activity when the memory display consisted of more meaningful stimuli. Critically, by asking participants whether they perceived the stimuli as a face or not, we also show that these increases in visual working memory capacity and recruitment of additional neural resources are because of the subjective perception of the stimulus and thus cannot be driven by physical properties of the stimulus. Broadly, this suggests that the capacity for active storage in visual working memory is not fixed but that more meaningful stimuli recruit additional working memory resources, allowing them to be better remembered.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (7): 937–947.
Published: 01 July 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Feature-based attention is known to enhance visual processing globally across the visual field, even at task-irrelevant locations. Here, we asked whether attention to object categories, in particular faces, shows similar location-independent tuning. Using EEG, we measured the face-selective N170 component of the EEG signal to examine neural responses to faces at task-irrelevant locations while participants attended to faces at another task-relevant location. Across two experiments, we found that visual processing of faces was amplified at task-irrelevant locations when participants attended to faces relative to when participants attended to either buildings or scrambled face parts. The fact that we see this enhancement with the N170 suggests that these attentional effects occur at the earliest stage of face processing. Two additional behavioral experiments showed that it is easier to attend to the same object category across the visual field relative to two distinct categories, consistent with object-based attention spreading globally. Together, these results suggest that attention to high-level object categories shows similar spatially global effects on visual processing as attention to simple, individual, low-level features.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (3): 433–445.
Published: 01 March 2016
FIGURES
| View All (5)
Abstract
View article
PDF
Recent findings suggest that a salient, irrelevant sound attracts attention to its location involuntarily and facilitates processing of a colocalized visual event [McDonald, J. J., Störmer, V. S., Martinez, A., Feng, W. F., & Hillyard, S. A. Salient sounds activate human visual cortex automatically. Journal of Neuroscience, 33, 9194–9201, 2013]. Associated with this cross-modal facilitation is a sound-evoked slow potential over the contralateral visual cortex termed the auditory-evoked contralateral occipital positivity (ACOP). Here, we further tested the hypothesis that a salient sound captures visual attention involuntarily by examining sound-evoked modulations of the occipital alpha rhythm, which has been strongly associated with visual attention. In two purely auditory experiments, lateralized irrelevant sounds triggered a bilateral desynchronization of occipital alpha-band activity (10–14 Hz) that was more pronounced in the hemisphere contralateral to the sound's location. The timing of the contralateral alpha-band desynchronization overlapped with that of the ACOP (∼240–400 msec), and both measures of neural activity were estimated to arise from neural generators in the ventral-occipital cortex. The magnitude of the lateralized alpha desynchronization was correlated with ACOP amplitude on a trial-by-trial basis and between participants, suggesting that they arise from or are dependent on a common neural mechanism. These results support the hypothesis that the sound-induced alpha desynchronization and ACOP both reflect the involuntary cross-modal orienting of spatial attention to the sound's location.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (2): 188–202.
Published: 01 February 2013
FIGURES
| View All (5)
Abstract
View article
PDF
Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (∼100–300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100–125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125–150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175–210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.