Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Vladimir Sloutsky
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (11): 1804–1819.
Published: 01 November 2016
FIGURES
| View All (9)
Abstract
View article
PDF
Little is known about the time scales in which sensitivity to novel category identity may become evident in visual and executive cortices in visual category learning (VCL) tasks and the nature of such changes in brain activation. We used fMRI to investigate the processing of category information and trial-by-trial feedback information. In each VCL task, stimuli differed in three feature dimensions. In each trial, either two same-category stimuli or two different-categories stimuli were presented. The participant had to learn which feature dimension was relevant for categorization based on the feedback that followed each categorization decision. We contrasted between same-category stimuli trials and different-category trials and between correct and incorrect categorization decision trials. In each trial, brain activation in the visual stimuli processing phase was modeled separately from activation during the later feedback processing phase. We found activation in the lateral occipital complex, indicating sensitivity to the category relation between stimuli, to be evident in VCL within only few learning trials. Specifically, greater lateral occipital complex activation was evident when same-category stimuli were presented than when different-category stimuli were presented. In the feedback processing phase, greater activation in both executive and visual cortices was evident primarily after “misdetections” of same-category stimuli. Implications regarding the contribution of different learning trials to VCL, and the respective role of key brain regions, at the onset of VCL, are discussed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (3): 320–334.
Published: 01 March 2006
Abstract
View article
PDF
Deductive reasoning is fundamental to science, human culture, and the solution of problems in daily life. It starts with premises and yields a logically necessary conclusion that is not explicit in the premises. Here we investigated the neurocognitive processes underlying logical thinking with event-related functional magnetic resonance imaging. We specifically focused on three temporally separable phases: (1) the premise processing phase, (2) the premise integration phase, and (3) the validation phase in which reasoners decide whether a conclusion logically follows from the premises. We found distinct patterns of cortical activity during these phases, with initial temporo-occipital activation shifting to the prefrontal cortex and then to the parietal cortex during the reasoning process. Activity in these latter regions was specific to reasoning, as it was significantly decreased during matched working memory problems with identical premises and equal working memory load.