Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
W. Caroline West
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (6): 1024–1037.
Published: 01 November 2000
Abstract
View article
PDF
Words representing concrete concepts are processed more quickly and efficiently than words representing abstract concepts. Concreteness effects have also been observed in studies using event-related brain potentials (ERPs). The aim of this study was to examine concrete and abstract words using both reaction time (RT) and ERP measurements to determine (1) at what point in the stream of cognitive processing concreteness effects emerge and (2) how different types of cognitive operations influence these concreteness effects. Three groups of subjects performed a sentence verification task in which the final word of each sentence was concrete or abstract. For each group the truthfulness judgment required either (1) image generation, (2) a semantic decision, or (3) evaluation of surface characteristics. Concrete and abstract words produced similar RTs and ERPs in the surface task, suggesting that postlexical semantic processing is necessary to elicit concreteness effects. In both the semantic and imagery tasks, RTs were shorter for concrete than for abstract words. This difference was greatest in the imagery task. Also, in both of these tasks concrete words elicited more negative ERPs than abstract words between 300 and 550 msec (N400). This effect was widespread across the scalp and may reflect activation in a linguistic semantic system common to both concrete and abstract words. ERPs were also more negative for concrete than abstract words between 550 and 800 msec. This effect was more frontally distributed and was most evident in the imagery task. We propose that this later anterior effect represents a distinct ERP component (N700) that is sensitive to the use of mental imagery. The N700 may reflect the access of specific characteristics of the imaged item or activation in a working memory system specific to mental imagery. These results also support the extended dual-coding hypothesis that superior associative connections and the use of mental imagery both contribute to processing advantages for concrete words over abstract words.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (3): 393–406.
Published: 01 May 2000
Abstract
View article
PDF
This study investigated the role of stimulus deviance in determining electrophysiologic and behavioral responses to “novelty.” Stimulus deviance was defined in terms of differences either from the immediately preceding context or from long-term experience. Subjects participated in a visual event-related potential (ERP) experiment, in which they controlled the duration of stimulus viewing with a button press, which served as a measure of exploratory behavior. Each of the three experimental conditions included a frequent repetitive background stimulus and infrequent stimuli that deviated from the background stimulus. In one condition, both background and deviant stimuli were simple, easily recognizable geometric figures. In another condition, both background and deviant stimuli were unusual/unfamiliar figures, and in a third condition, the background stimulus was a highly unusual figure, and the deviant stimuli were simple, geometric shapes. Deviant stimuli elicited larger N2-P3 amplitudes and longer viewing durations than the repetitive background stimulus, even when the deviant stimuli were simple, familiar shapes and the background stimulus was a highly unusual figure. Compared to simple, familiar deviant stimuli, unusual deviant stimuli elicited larger N2-P3 amplitudes and longer viewing times. Within subjects, the deviant stimuli that evoked the largest N2-P3 responses also elicited the longest viewing durations. We conclude that deviance from both immediate context and long-term prior experience contribute to the response to novelty, with the combination generating the largest N2-P3 amplitude and the most sustained attention. The amplitude of the N2-P3 may reflect how much “uncertainty” is evoked by a novel visual stimulus and signal the need for further exploration and cognitive processing.