Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
W. Todd Maddox
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Marissa A. Gorlick, Darrell A. Worthy, Valerie S. Knopik, John E. McGeary, Christopher G. Beevers ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (3): 509–521.
Published: 01 March 2015
FIGURES
| View All (4)
Abstract
View article
PDF
Humans with seven or more repeats in exon III of the DRD4 gene (long DRD4 carriers) sometimes demonstrate impaired attention, as seen in attention-deficit hyperactivity disorder, and at other times demonstrate heightened attention, as seen in addictive behavior. Although the clinical effects of DRD4 are the focus of much work, this gene may not necessarily serve as a “risk” gene for attentional deficits, but as a plasticity gene where attention is heightened for priority items in the environment and impaired for minor items. Here we examine the role of DRD4 in two tasks that benefit from selective attention to high-priority information. We examine a category learning task where performance is supported by focusing on features and updating verbal rules. Here, selective attention to the most salient features is associated with good performance. In addition, we examine the Operation Span (OSPAN) task, a working memory capacity task that relies on selective attention to update and maintain items in memory while also performing a secondary task. Long DRD4 carriers show superior performance relative to short DRD4 homozygotes (six or less tandem repeats) in both the category learning and OSPAN tasks. These results suggest that DRD4 may serve as a “plasticity” gene where individuals with the long allele show heightened selective attention to high-priority items in the environment, which can be beneficial in the appropriate context.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (5): 707–723.
Published: 01 May 2005
Abstract
View article
PDF
The basal ganglia and cerebellum have both been implicated in motor skill acquisition. Recent hypotheses concerning cognitive functions of the basal ganglia and cerebellum have emphasized that these subcortical structures may also contribute to nonmotor learning. To explore this issue, patients with Parkinson's disease (PD) and patients with cerebellar lesions (CB) were tested on two category-learning tasks. Identical stimulus displays were used for the two tasks, consisting of a reference line and target line. In the length task, the two categories were defined based on the length of the target line. In the distance task, the two categories were defined by the distance between the target and reference lines. Thus, both categories could be defined by a simple rule in which attention must be restricted to a single relevant dimension. Consistent with previous results, the patients with PD were impaired on both tasks compared with neurologically healthy controls. In contrast, the CB patients performed similar to the control participants. Model-based analyses indicate that the patients with PD were able to select the appropriate categorization rule, but that they adopted suboptimal category boundaries in both conditions and were more variable in the application of the selected rule. These results provide an important neuropsychological dissociation on a non-motor-learning task between the effects of basal ganglia and cerebellar lesions. Moreover, the modeling work suggests that at least part of the Parkinson patients' impairment on these tasks reflect a tendency to exhibit strong response biases.