Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Warren H. Meck
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (2): 193–203.
Published: 01 February 2008
Abstract
View article
PDF
Behavioral studies have demonstrated that time perception in adults, children, and nonhuman animals is subject to Weber's Law. More specifically, as with discriminations of other features, it has been found that it is the ratio between two durations rather than their absolute difference that controls the ability of an animal to discriminate them. Here, we show that scalp-recorded event-related electrical brain potentials (ERPs) in both adults and 10-month-old human infants, in response to changes in interstimulus interval (ISI), appear to obey the scalar property found in time perception in adults, children, and nonhuman animals. Using a timing-interval oddball paradigm, we tested adults and infants in conditions where the ratio between the standard and deviant interval in a train of homogeneous auditory stimuli varied such that there was a 1:4 (only for the infants), 1:3, 1:2, and 2:3 ratio between the standard and deviant intervals. We found that the amplitude of the deviant-triggered mismatch negativity ERP component (deviant-ISI ERP minus standard-ISI ERP) varied as a function of the ratio of the standard to deviant interval. Moreover, when absolute values were varied and ratio was held constant, the mismatch negativity did not vary.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1998) 10 (3): 316–331.
Published: 01 May 1998
Abstract
View article
PDF
Dysfunction of the basal ganglia and the brain nuclei interconnected with them leads to disturbances of movement and cognition, including disordered timing of movement and perceptual timing deflcits. Patients with Parkinson's disease (PD) were studied in temporal reproduction tasks. We examined PD patients when brain dopamine (DA) transmission was impaired (OFF state) and when DA transmission was reestablished, at the time of maximal clinical beneflt following administration of levodopa + apomorphine (ON state). Patients reproduced target times of 8 and 21 sec trained in blocked trials with the peak interval procedure, which were veridical in the ON state, comparable to normative performance by healthy young and aged controls (Experiment 1). In the OFF state, temporal reproduction was impaired in both accuracy and precision (variance). The 8-sec signal was reproduced as longer and the 21-sec signal was reproduced as shorter than they actually were (Experiment 1). This fimigrationfl effect was dependent upon training of two different durations. When PD patients were trained on 21 sec only (Experiment 2), they showed a reproduction error in the long direction, opposite to the error produced under the dual training condition of Experiment 1. The results are discussed as a mutual attraction between temporal processing systems, in memory and clock stages, when dopaminergic regulation in the striatum is dysfunctional.