Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-9 of 9
William M. Kelley
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (9): 1243–1254.
Published: 01 September 2016
FIGURES
| View All (4)
Abstract
View article
PDF
An important feature of adaptive social behavior is the ability to flexibly modify future actions based on the successes or failures of past experiences. The ventral striatum (VS) occupies a central role in shaping behavior by using feedback to evaluate actions and guide learning. The current studies tested whether feedback indicating the need to update social knowledge would engage the VS, thereby facilitating subsequent learning. We also examined the sensitivity of these striatal signals to the value associated with social group membership. Across two fMRI studies, participants answered questions testing their knowledge about the preferences of personally relevant social groups who were high (in-group) or low (out-group) in social value. Participants received feedback indicating whether their responses were correct or incorrect on a trial-by-trial basis. After scanning, participants were given a surprise memory test examining memory for the different types of feedback. VS activity in response to social feedback correlated with subsequent memory, specifying a role for the VS in encoding and updating social knowledge. This effect was more robust in response to in-group than out-group feedback, indicating that the VS tracks variations in social value. These results provide novel evidence of a neurobiological mechanism adaptively tuned to the motivational relevance of the surrounding social environment that focuses learning efforts on the most valuable social outcomes and triggers adjustments in behavior when necessary.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (11): 1887–1895.
Published: 01 November 2013
FIGURES
Abstract
View article
PDF
As a social species, humans are acutely aware of cues that signal inclusionary status. This study characterizes behavioral and neural responses when individuals anticipate social feedback. Across two fMRI studies, participants ( n = 42) made social judgments about supposed peers and then received feedback from those individuals. Of particular interest was the neural activity occurring when participants were awaiting social feedback. During this anticipatory period, increased neural activity was observed in the ventral striatum, a central component of the brain's reward circuitry, and dorsomedial pFC, a brain region implicated in mentalizing about others. Individuals high in rejection sensitivity exhibited greater responses in both the ventral striatum and dorsomedial pFC when anticipating positive feedback. These findings provide initial insight into the neural mechanisms involved in anticipating social evaluations as well as the cognitive processes that underlie rejection sensitivity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (4): 547–557.
Published: 01 April 2013
FIGURES
| View All (6)
Abstract
View article
PDF
Extant research has examined the process of decision making under uncertainty, specifically in situations of ambiguity. However, much of this work has been conducted in the context of semantic and low-level visual processing. An open question is whether ambiguity in social signals (e.g., emotional facial expressions) is processed similarly or whether a unique set of processors come on-line to resolve ambiguity in a social context. Our work has examined ambiguity using surprised facial expressions, as they have predicted both positive and negative outcomes in the past. Specifically, whereas some people tended to interpret surprise as negatively valenced, others tended toward a more positive interpretation. Here, we examined neural responses to social ambiguity using faces (surprise) and nonface emotional scenes (International Affective Picture System). Moreover, we examined whether these effects are specific to ambiguity resolution (i.e., judgments about the ambiguity) or whether similar effects would be demonstrated for incidental judgments (e.g., nonvalence judgments about ambiguously valenced stimuli). We found that a distinct task control (i.e., cingulo-opercular) network was more active when resolving ambiguity. We also found that activity in the ventral amygdala was greater to faces and scenes that were rated explicitly along the dimension of valence, consistent with findings that the ventral amygdala tracks valence. Taken together, there is a complex neural architecture that supports decision making in the presence of ambiguity: (a) a core set of cortical structures engaged for explicit ambiguity processing across stimulus boundaries and (b) other dedicated circuits for biologically relevant learning situations involving faces.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (7): 1625–1633.
Published: 01 July 2012
FIGURES
Abstract
View article
PDF
Experiencing negative affect frequently precedes lapses in self-control for dieters, smokers, and drug addicts. Laboratory research has similarly shown that inducing negative emotional distress increases the consumption of food or drugs. One hypothesis for this finding is that emotional distress sensitizes the brain's reward system to appetitive stimuli. Using functional neuroimaging, we demonstrate that inducing negative affect in chronic dieters increases activity in brain regions representing the reward value of appetitive stimuli when viewing appetizing food cues. Thirty female chronic dieters were randomly assigned to receive either a negative ( n = 15) or neutral mood induction ( n = 15) immediately followed by exposure to images of appetizing foods and natural scenes during fMRI. Compared with chronic dieters in a neutral mood, those receiving a negative mood induction showed increased activity in the OFC to appetizing food images. In addition, activity to food images in the OFC and ventral striatum was correlated with individual differences in the degree to which the negative mood induction decreased participants' self-esteem. These findings suggest that distress sensitizes the brain's reward system to appetitive cues, thereby offering a mechanism for the oft-observed relationship between negative affect and disinhibited eating.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (8): 1952–1963.
Published: 01 August 2011
FIGURES
Abstract
View article
PDF
Numerous studies have demonstrated that consuming high-calorie food leads to subsequent overeating by chronic dieters. The present study investigates the neural correlates of such self-regulatory failures using fMRI. Chronic dieters ( n = 50) and non-dieters ( n = 50) consumed either a 15-oz glass of cold water or a 15-oz milkshake and were subsequently imaged while viewing pictures of animals, environmental scenes, people, and appetizing food items. Results revealed a functional dissociation in nucleus accumbens and amygdala activity that paralleled well-established behavioral patterns of eating observed in dieters and non-dieters. Whereas non-dieters showed the greatest nucleus accumbens activity in response to food items after water consumption, dieters showed the greatest activity after consuming the milkshake. Activity in the left amygdala demonstrated the reverse interaction. Considered together with previously reported behavioral findings, the present results offer a suggested neural substrate for diet failure.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (6): 941–951.
Published: 01 June 2008
Abstract
View article
PDF
The current study examined the neural substrates of facial attractiveness judgments. Based on the extant behavioral literature, it was hypothesized that brain regions involved in identifying the potential reward value of a stimulus would be more active when men viewed attractive women than when women viewed attractive men. To test this hypothesis, we conducted an event-related functional magnetic resonance imaging experiment during which participants provided explicit attractiveness judgments for faces of the opposite sex. These individual ratings were subsequently used to perform analyses aimed at identifying the brain regions preferentially responsive to attractive faces for both sex groups. The results revealed that brain regions comprising the putative reward circuitry (e.g., nucleus accumbens [NAcc], orbito-frontal cortex [OFC]) showed a linear increase in activation with increased judgments of attractiveness. However, further analysis also revealed sex differences in the recruitment of OFC, which distinguished attractive and unattractive faces only for male participants.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (8): 1253–1265.
Published: 01 August 2006
Abstract
View article
PDF
Medial temporal lobe structures such as the hippocampus have been shown to play a critical role in mnemonic processes, with additional recruitment of the amygdala when memories contain emotional content. Thus far, studies that have examined the relationship between amygdala activity and memory have typically relied on emotional content of the kind that is rarely encountered in day-to-day interactions. The present event-related functional magnetic resonance imaging study investigates whether amygdala activity supports emotional memory during the more subtle social interactions that punctuate everyday life. Across four training sessions, subjects learned common first names for unfamiliar faces in the presence or absence of additional contextual information that was positive, negative, and neutral in valence (e.g., “Emily helps the homeless,” “Bob is a deadbeat dad,” “Eric likes carrots”). During scanning, subjects performed a yes/no recognition memory test on studied and novel faces. Results revealed a functional dissociation within the medial temporal lobe. Whereas a region within the right hippocampus responded strongly to all faces that had been paired with a description, regardless of its valence, activity in the right amygdala was uniquely sensitive to faces that had been previously associated with emotional descriptions (negative and positive > neutral). This pattern of activity in the amygdala was preserved even when the emotional contexts associated with faces could not be explicitly retrieved, suggesting a role for the amygdala in providing a nonspecific arousal indicator in response to viewing individuals with emotionally colored pasts.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (1): 139–148.
Published: 01 January 2004
Abstract
View article
PDF
The present study used fMRI to investigate functional dissociations across frontal regions during incidental memory formation. Subjects were imaged while encoding materials with differential access to phonological codes (nonfamous faces and nameable famous faces) under task conditions that encouraged elaborate (deep) or superficial (shallow) encoding strategies. Results revealed a functional dissociation between dorsal posterior regions of the prefrontal cortex (BA 6/44) that were sensitive to material type (famous vs. nonfamous), irrespective of the encoding task, and ventral anterior regions of the prefrontal cortex (BA 45/47) that were uniquely sensitive to task demands (deep vs. shallow), regardless of material type. Further, subjects realized a memorial advantage to the extent that they recruited these dissociable frontal regions. These results demonstrate a posterior/anterior dichotomy in the frontal cortex that underlies separable code-based routes to human memory formation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1999) 11 (6): 631–640.
Published: 01 November 1999
Abstract
View article
PDF
The frontal cortex has been described as playing both “setspecific” and “code-specific” roles in human memory processing. Set specificity refers to the finding of goal-oriented differences in activation patterns (e.g., encoding relative to retrieval). Code specificity refers to the finding of different patterns of activation for different types of stimuli (e.g., verbal/nonverbal). Using a two (code: verbal, nonverbal) by two (set: encoding, retrieval) within-subjects design and fMRI, we explored the influence of type of code and mental set in two regions in the frontal cortex that have been previously shown to be involved in memory. A region in the dorsal extent of the inferior frontal gyrus (BA 6/44) demonstrated code-specific effects. Specifically, an interaction of material type with hemisphere was obtained, such that words produced predominantly left-lateralized activation, whereas unfamiliar faces elicited predominantly right-lateralized activation. A region of the right frontal polar cortex (in or near BA 10), which has been activated in many memory retrieval studies, showed set-specific activation in that it was more active during retrieval than encoding. These data demonstrate that distinct regions in the frontal cortex contribute in systematic yet different ways to human memory processing.