Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
William Marslen-Wilson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (12): 1878–1896.
Published: 01 December 2016
FIGURES
| View All (7)
Abstract
View article
PDF
Derivational morphology is a cross-linguistically dominant mechanism for word formation, combining existing words with derivational affixes to create new word forms. However, the neurocognitive mechanisms underlying the representation and processing of such forms remain unclear. Recent cross-linguistic neuroimaging research suggests that derived words are stored and accessed as whole forms, without engaging the left-hemisphere perisylvian network associated with combinatorial processing of syntactically and inflectionally complex forms. Using fMRI with a “simple listening” no-task procedure, we reexamine these suggestions in the context of the root-based combinatorially rich Italian lexicon to clarify the role of semantic transparency (between the derived form and its stem) and affix productivity in determining whether derived forms are decompositionally represented and which neural systems are involved. Combined univariate and multivariate analyses reveal a key role for semantic transparency, modulated by affix productivity. Opaque forms show strong cohort competition effects, especially for words with nonproductive suffixes ( ventura , “destiny”). The bilateral frontotemporal activity associated with these effects indicates that opaque derived words are processed as whole forms in the bihemispheric language system. Semantically transparent words with productive affixes ( libreria , “bookshop”) showed no effects of lexical competition, suggesting morphologically structured co-representation of these derived forms and their stems, whereas transparent forms with nonproductive affixes ( pineta , pine forest) show intermediate effects. Further multivariate analyses of the transparent derived forms revealed affix productivity effects selectively involving left inferior frontal regions, suggesting that the combinatorial and decompositional processes triggered by such forms can vary significantly across languages.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (2): 246–265.
Published: 01 February 2015
FIGURES
| View All (4)
Abstract
View article
PDF
Despite a century of research into visual word recognition, basic questions remain unresolved about the functional architecture of the process that maps visual inputs from orthographic analysis onto lexical form and meaning and about the units of analysis in terms of which these processes are conducted. Here we use magnetoencephalography, supported by a masked priming behavioral study, to address these questions using contrasting sets of simple ( walk ), complex ( swimmer ), and pseudo-complex ( corner ) forms. Early analyses of orthographic structure, detectable in bilateral posterior temporal regions within a 150–230 msec time frame, are shown to segment the visual input into linguistic substrings (words and morphemes) that trigger lexical access in left middle temporal locations from 300 msec. These are primarily feedforward processes and are not initially constrained by lexical-level variables. Lexical constraints become significant from 390 msec, in both simple and complex words, with increased processing of pseudowords and pseudo-complex forms. These results, consistent with morpho-orthographic models based on masked priming data, map out the real-time functional architecture of visual word recognition, establishing basic feedforward processing relationships between orthographic form, morphological structure, and lexical meaning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (5): 998–1010.
Published: 01 May 2010
FIGURES
| View All (4)
Abstract
View article
PDF
There are two views about morphology, the aspect of language concerned with the internal structure of words. One view holds that morphology is a domain of knowledge with a specific type of neurocognitive representation supported by specific brain mechanisms lateralized to left fronto-temporal cortex. The alternate view characterizes morphological effects as being a by-product of the correlation between form and meaning and where no brain area is predicted to subserve morphological processing per se. Here we provided evidence from Arabic that morphemes do have specific memory traces, which differ as a function of their functional properties. In an MMN study, we showed that the abstract consonantal root, which conveys semantic meaning (similarly to monomorphemic content words in English), elicits an MMN starting from 160 msec after the deviation point, whereas the abstract vocalic word pattern, which plays a range of grammatical roles, elicits an MMN response starting from 250 msec after the deviation point. Topographically, the root MMN has a symmetric fronto-central distribution, whereas the word pattern MMN lateralizes significantly to the left, indicating stronger involvement of left peri-sylvian areas. In languages with rich morphologies, morphemic processing seems to be supported by distinct neural networks, thereby providing evidence for a specific neuronal basis for morphology as part of the cerebral language machinery.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (5): 593–609.
Published: 01 July 2001
Abstract
View article
PDF
The medial temporal lobes play a central role in the consolidation of new memories. Medial temporal lesions impair episodic learning in amnesia, and disrupt vocabulary acquisition. To investigate the role of consolidation processes in phonological memory and to understand where and how, in amnesia, these processes begin to fail, we reexamined phonological memory in the amnesic patient HM. While HM's word span performance was normal, his supraspan recall was shown to be markedly impaired, with his recall characterized by a distinctive pattern of phonological errors, where he recombined phonemes from the original list to form new response words. These were similar to errors observed earlier for patients with specifically semantic deficits. Amnesic Korsakoff's patients showed a similar, though much less marked, pattern. We interpret the data in terms of a model of lexical representation where temporal lobe damage disrupts the processes that normally bind semantic and phonological representations.