Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Xiaolin Zhou
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (4): 684–696.
Published: 01 April 2009
Abstract
View article
PDF
The functional significance of error-related negativity (Ne/ERN), which occurs at approximately the same time as erroneous responses, has been investigated extensively using reaction time (RT) tasks. The error detection theory assumes that the Ne/ERN reflects the mismatch detected by comparing representations of the intended and the actually performed actions. The conflict monitoring theory asserts that the Ne/ERN reflects the detection of response conflict between intended and actually performed actions during response selection. In this study, we employed a gambling task in which participants were required to choose whether they would take part in betting in each trial and they were presented with gain or loss feedback in both the “to bet” and the “not to bet” trials. The response-locked ERP magnitudes were more negative for “to bet” than for “not to bet” choices for both large and small stakes and were more negative for choices involving large rather than small stakes. Dipole source analysis localized the ERP responses to the anterior cingulate cortex (ACC). These findings suggest that the ACC signals the riskiness of choices and may function as an early warning system that alerts the brain to prepare for the potential negative consequence associated with a risky action.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (11): 1937–1946.
Published: 01 November 2006
Abstract
View article
PDF
It is well documented that the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC) are intensively involved in conflict control. However, it remains unclear how these “executive” brain regions will act when the conflict control process interacts with spatial attentional orienting. In the classical spatial cueing paradigm [Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X (pp. 531–556). Hillsdale, NJ: Erlbaum], response to a target is delayed when it appears at the cued location compared with at the uncued location, if the time interval between the cue and the target is greater than 300 msec. This effect of inhibition of return (IOR) can alter the resolution of Stroop conflict such that the Stroop interference effect disappears at the cued (inhibited) location [Vivas, A. B., & Fuentes, L. J. Stroop interference is affected in inhibition of return. Psychonomic Bulletin and Review , 8, 315–323, 2001]. In this event-related functional magnetic resonance study, we investigate the differential neural mechanisms underlying interactions between pre-response interference, response interference, and spatial orienting. Two types of Stroop words [incongruent response-eligible words (IE), incongruent response-ineligible words (II)] and neutral words were presented either at the cued or uncued location. The significant pre-response interference at the uncued location activated the left rostral ACC as compared with at the cued location. Moreover, although the IE words which have conflicts at both pre-response and response levels did not cause significant behavioral interference at the cued location, they activated the left DLPFC as compared with at the uncued location. Furthermore, neutral words showed significant IOR effects behaviorally, and they activated the left frontal eye field (FEF) at the uncued location relative to the cued location. These results suggest that the left rostral ACC is involved in the interaction between pre-response conflict and IOR, whereas the left DLPFC is involved in the interaction between response conflict and IOR. Moreover, the FEF is involved in shifting attentional focus to novel locations during spatial search.