Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Xing Tian
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (2): 352–364.
Published: 01 February 2015
FIGURES
| View All (7)
Abstract
View article
PDF
A critical subroutine of self-monitoring during speech production is to detect any deviance between expected and actual auditory feedback. Here we investigated the associated neural dynamics using MEG recording in mental-imagery-of-speech paradigms. Participants covertly articulated the vowel /a/; their own (individually recorded) speech was played back, with parametric manipulation using four levels of pitch shift, crossed with four levels of onset delay. A nonmonotonic function was observed in early auditory responses when the onset delay was shorter than 100 msec: Suppression was observed for normal playback, but enhancement for pitch-shifted playback; however, the magnitude of enhancement decreased at the largest level of pitch shift that was out of pitch range for normal conversion, as suggested in two behavioral experiments. No difference was observed among different types of playback when the onset delay was longer than 100 msec. These results suggest that the prediction suppresses the response to normal feedback, which mediates source monitoring. When auditory feedback does not match the prediction, an “error term” is generated, which underlies deviance detection. We argue that, based on the observed nonmonotonic function, a frequency window (addressing spectral difference) and a time window (constraining temporal difference) jointly regulate the comparison between prediction and feedback in speech.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (7): 1020–1036.
Published: 01 July 2013
FIGURES
| View All (7)
Abstract
View article
PDF
The computational role of efference copies is widely appreciated in action and perception research, but their properties for speech processing remain murky. We tested the functional specificity of auditory efference copies using magnetoencephalography recordings in an unconventional pairing: We used a classical cognitive manipulation (mental imagery—to elicit internal simulation and estimation) with a well-established experimental paradigm (one shot repetition—to assess neuronal specificity). Participants performed tasks that differentially implicated internal prediction of sensory consequences (overt speaking, imagined speaking, and imagined hearing) and their modulatory effects on the perception of an auditory (syllable) probe were assessed. Remarkably, the neural responses to overt syllable probes vary systematically, both in terms of directionality (suppression, enhancement) and temporal dynamics (early, late), as a function of the preceding covert mental imagery adaptor. We show, in the context of a dual-pathway model, that internal simulation shapes perception in a context-dependent manner.