Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Yuhong Jiang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (8): 1080–1094.
Published: 15 November 2003
Abstract
View article
PDF
In many situations, people can only compute one stimulus-to-response mapping at a time, suggesting that response selection constitutes a “central processing bottleneck” in human information processing. Using fMRI, we tested whether common or distinct brain regions were involved in response selection across visual and auditory inputs, and across spatial and nonspatial mapping rules. We isolated brain regions involved in response selection by comparing two conditions that were identical in perceptual input and motor output, but differed in the complexity of the mapping rule. In the visual—manual task of Experiment 1, four vertical lines were positioned from left to right, and subjects pressed one of four keys to report which line was unique in length. In the auditory—manual task of Experiment 2, four tones were presented in succession, and subjects pressed one of four keys to report which tone was unique in duration. For both visual and auditory tasks, the mapping between target position and key position was either spatially compatible or incompatible. In the verbal task of Experiment 3, subjects used nonspatial mappings that were either compatible (“same” if colors matched; “different” if they mismatched) or incompatible (the opposite). Extensive activation overlap was observed across all three experiments for incompatible versus compatible mapping in bilateral parietal and frontal regions. Our results indicate that common neural substrates are involved in response selection across input modalities and across spatial and nonspatial domains of stimulus-to-response mapping, consistent with behavioral evidence that response selection is a central process.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (8): 1077–1079.
Published: 15 November 2003
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (8): 1095–1110.
Published: 15 November 2003
Abstract
View article
PDF
Behavioral evidence supports a dissociation between response selection (RS; stimulus-to-response [S—R] mapping) and perceptual discrimination (PD): The former may be subject to a central processing bottleneck, whereas the latter is not (Pashler, 1994). We previously (Jiang & Kanwisher, 2003) identified a set of frontal and parietal regions involved in RS as those that produce a stronger signal when subjects follow a difficult S—R mapping rule than an easy mapping rule. Here, we test whether any of these regions are selectively activated by RS and not perceptual processing, as predicted by the central bottleneck view. In Experiment 1, subjects indicated which of four parallel lines was unique in length; PD was indexed by a higher BOLD response when the discrimination was difficult versus easy. Stimuli and responses were closely matched across conditions. We found that all regions-of-interest (ROIs) engaged by RS were also engaged by perceptual processing, arguing against the existence of mechanisms exclusively involved in RS. In Experiments 2 and 3, we asked what processes might go on in these ROIs, such that they could be recruited by both RS and perceptual processing. Our data argue against an account of this common activation in terms of spatial processing or general task difficulty. Thus, PD may recruit the same central processes that are engaged by RS.