Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Yulia Lerner
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (11): 2215–2230.
Published: 01 October 2021
FIGURES
| View All (4)
Abstract
View article
PDF
Despite our differences, there is much about the natural visual world that most observers perceive in common. Across adults, approximately 30% of the brain is activated in a consistent fashion while viewing naturalistic input. At what stage of development is this consistency of neural profile across individuals present? Here, we focused specifically on whether this mature profile is present in adolescence, a key developmental period that bridges childhood and adulthood, and in which new cognitive and social challenges are at play. We acquired fMRI data evoked by a movie shown twice to younger (9–14 years old) and older adolescents (15–19 years old) and to adults, and conducted three key analyses. First, we characterized the consistency of the neural response within individuals (across separate runs of the movie), then within individuals of the same age group, and, last, between age groups. The neural consistency within individuals was similar across age groups with reliable activation in largely overlapping but slightly different cortical regions. In contrast, somewhat differing regions exhibited higher within-age correlations in both groups of adolescents than in the adults. Last, across the whole cortex, we identified regions evincing different patterns of maturation across age. Together, these findings provide a fine-grained characterization of functional neural development in adolescence and uncover signatures of widespread change in cortical coherence that supports the emerging mature stereotypical responses to naturalistic stimuli. These results also offer a more nuanced account of development that obeys neither a rigid linear progression nor a large qualitative change over time.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (3): 531–542.
Published: 01 March 2012
FIGURES
| View All (6)
Abstract
View article
PDF
The ability to selectively perceive items in the environment may be modulated by the emotional content of those items. The neural mechanism that underlies the privileged processing of emotionally salient content is poorly understood. Here, using fMRI, we investigated this issue via a binocular rivalry procedure when face stimuli depicting fearful or neutral expressions competed for awareness with a house. Results revealed an interesting dissociation in the amygdala during rivalry condition: Whereas its dorsal component exhibited dominant activation to aware fearful faces, a ventral component was more active during the suppression of fearful faces. Moreover, during rivalry, the dorsal and ventral components of the amygdala were coupled with segregated cortical activations in the brainstem and medial PFC, respectively. In summary, this study points to a differential involvement of two clusters within the amygdala and their connected networks in naturally occurring perceptual biases of emotional content in faces.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (7): 1189–1206.
Published: 01 July 2008
Abstract
View article
PDF
Object-related areas in the ventral visual system in humans are known from imaging studies to be preferentially activated by object images compared with noise or texture patterns. It is unknown, however, which features of the object images are extracted and represented in these areas. Here we tested the extent to which the representation of visual classes used object fragments selected by maximizing the information delivered about the class. We tested functional magnetic resonance imaging blood oxygenation level-dependent activation of highly informative object features in low- and high-level visual areas, compared with noninformative object features matched for low-level image properties. Activation in V1 was similar, but in the lateral occipital area and in the posterior fusiform gyrus, activation by “informative” fragments was significantly higher for three object classes. Behavioral studies also revealed high correlation between performance and fragments information. The results show that an objective class-information measure can predict classification performance and activation in human object-related areas.