Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Yunglin Gazes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (6): 1249–1258.
Published: 01 June 2015
FIGURES
| View All (5)
Abstract
View article
PDF
Cognitive psychologists posit several specific cognitive abilities that are measured with sets of cognitive tasks. Tasks that purportedly tap a specific underlying cognitive ability are strongly correlated with one another, whereas performances on tasks that tap different cognitive abilities are less strongly correlated. For these reasons, latent variables are often considered optimal for describing individual differences in cognitive abilities. Although latent variables cannot be directly observed, all cognitive tasks representing a specific latent ability should have a common neural underpinning. Here, we show that cognitive tasks representing one ability (i.e., either perceptual speed or fluid reasoning) had a neural activation pattern distinct from that of tasks in the other ability. One hundred six participants between the ages of 20 and 77 years were imaged in an fMRI scanner while performing six cognitive tasks, three representing each cognitive ability. Consistent with prior research, behavioral performance on these six tasks clustered into the two abilities based on their patterns of individual differences and tasks postulated to represent one ability showed higher similarity across individuals than tasks postulated to represent a different ability. This finding was extended in the current report to the spatial resemblance of the task-related activation patterns: The topographic similarity of the mean activation maps for tasks postulated to reflect the same reference ability was higher than for tasks postulated to reflect a different reference ability. Furthermore, for any task pairing, behavioral and topographic similarities of underlying activation patterns are strongly linked. These findings suggest that differences in the strengths of correlations between various cognitive tasks may be because of the degree of overlap in the neural structures that are active when the tasks are being performed. Thus, the latent variable postulated to account for correlations at a behavioral level may reflect topographic similarities in the neural activation across different brain regions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (10): 1762–1776.
Published: 01 October 2008
Abstract
View article
PDF
This study examined how aging affects the spatial patterns of repetition effects associated with perceptual priming of unfamiliar visual objects. Healthy young ( n = 14) and elderly adults ( n = 13) viewed four repetitions of structurally possible and impossible figures while being scanned with blood oxygenation level-dependent functional magnetic resonance imaging. Although explicit recognition memory for the figures was reduced in the elder subjects, repetition priming did not differ across the two age groups. Using multivariate linear modeling, we found that the spatial networks of regions that demonstrated repetition-related increases and decreases in activity were identical in both age groups, although there was a trend for smaller magnitude repetition effects in these networks in the elder adults for objects that had been repeated thrice. Furthermore, repetition-related reductions in activity in the left inferior frontal cortex for possible objects correlated with repetition-related facilitation in reaction time across both young and elder subjects. Repetition-related increases of an initially negative response were observed for both object types in both age groups in parts of the default network , suggesting that less attention was required for processing repeated stimuli. These findings extend prior studies using verbal and semantic picture priming tasks and support the view that perceptual repetition priming remains intact in later adulthood because the same spatial networks of regions continue to show repetition-related neural plasticity across the adult life span.