Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Zach Solan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (1): 18–30.
Published: 01 January 2001
Abstract
View article
PDF
This paper presents a neural model of similarity perception in identification tasks. It is based on self-organizing maps and population coding and is examined through five different identification experiments. Simulating an identification task, the neural model generates a confusion matrix that can be compared directly with that of human subjects. The model achieves a fairly accurate match with the pertaining experimental data both during training and thereafter. To achieve this fit, we find that the entire activity in the network should decline while learning the identification task, and that the population encoding of the specific stimuli should become sparse as the network organizes. Our results, thus, suggest that a self-organizing neural model employing population coding can account for identification processing while suggesting computational constraints on the underlying cortical networks.