Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Zaid N. Safiullah
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (10): 1499–1516.
Published: 01 October 2018
FIGURES
| View All (5)
Abstract
View article
PDF
The fusiform and occipital face areas (FFA and OFA) are functionally defined brain regions in human ventral occipitotemporal cortex associated with face perception. There is an ongoing debate, however, whether these regions are face-specific or whether they also facilitate the perception of nonface object categories. Here, we present evidence that, under certain conditions, bilateral FFA and OFA respond to a nonface category equivalently to faces. In two fMRI sessions, participants performed same–different judgments on two object categories (faces and chairs). In one session, participants differentiated between distinct exemplars of each category, and in the other session, participants differentiated between exemplars that differed only in the shape or spatial configuration of their features (featural/configural differences). During the latter session, the within-category similarity was comparable for both object categories. When differentiating between distinct exemplars of each category, bilateral FFA and OFA responded more strongly to faces than to chairs. In contrast, during featural/configural difference judgments, bilateral FFA and OFA responded equivalently to both object categories. Importantly, during featural/configural difference judgments, the magnitude of activity within FFA and OFA evoked by the chair task predicted the participants' behavioral performance. In contrast, when participants differentiated between distinct chair exemplars, activity within these face regions did not predict the behavioral performance of the chair task. We conclude that, when the within-category similarity of a face and a nonface category is comparable and when the same cognitive strategies used to process a face are applied to a nonface category, the FFA and OFA respond equivalently to that nonface category and faces.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (12): 2442–2461.
Published: 01 December 2015
FIGURES
| View All (9)
Abstract
View article
PDF
Everyday objects are often composed of multiple parts, each with a unique surface texture. The neural substrates mediating the integration of surface features on different object parts are not fully understood, and potential contributions by both the ventral and dorsal visual pathways are possible. To explore these substrates, we collected fMRI data while human participants performed a difference detection task on two objects with textured parts. The objects could either differ in the assignment of the same texture to different object parts (“texture-location”) or the types of texture (“texture-type”). In the ventral stream, comparable BOLD activation levels were observed in response to texture-location and texture-type differences. In contrast, in a priori localized spatial processing regions of the dorsal stream, activation was greater for texture-location than texture-type differences, and the magnitude of the activation correlated with behavioral performance. We confirmed the reliance of surface texture to object part mapping on spatial processing mechanisms in subsequent psychophysical experiments, in which participants detected a difference in the spatial distance of an object relative to a reference line. In this task, distracter objects occasionally appeared, which differed in either texture-location or texture-type. Distracter texture-location differences slowed detection of spatial distance differences, but texture-type differences did not. More importantly, the distracter effects were only observed when texture-location differences were presented within whole shapes and not between separated shape parts at distinct spatial locations. We conclude that both the mapping of texture features to object parts and the representation of object spatial position are mediated by common neural substrates within the dorsal visual pathway.