Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-2 of 2
Article
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (6): 822–829.
Published: 01 June 2013
FIGURES
| View All (5)
Abstract
View article
PDF
A central feature of voluntary movement is the sense of volition, but when this sense arises in the course of movement formulation and execution is not clear. Many studies have explored how the brain might be actively preparing movement before the sense of volition; however, because the timing of the sense of volition has depended on subjective and retrospective judgments, these findings are still regarded with a degree of scepticism. EEG events such as beta event-related desynchronization and movement-related cortical potentials are associated with the brain's programming of movement. Using an optimized EEG signal derived from multiple variables, we were able to make real-time predictions of movements in advance of their occurrence with a low false-positive rate. We asked participants what they were thinking at the time of prediction: Sometimes they were thinking about movement, and other times they were not. Our results indicate that the brain can be preparing to make voluntary movements while participants are thinking about something else.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (6): 1344–1357.
Published: 01 June 2012
FIGURES
| View All (4)
Abstract
View article
PDF
Perception of known patterns results from the interaction of current sensory input with existing internal representations. It is unclear how perceptual and mnemonic processes interact when visual input is dynamic and structured such that it does not allow immediate recognition of obvious objects and forms. In an fMRI experiment, meaningful visual motion stimuli depicting movement through a virtual tunnel and indistinct, meaningless visual motion stimuli, achieved through phase scrambling of the same stimuli, were presented while participants performed an optic flow task. We found that our indistinct visual motion stimuli evoked hippocampal activation, whereas the corresponding meaningful stimuli did not. Using independent component analysis, we were able to demonstrate a functional connectivity between the hippocampus and early visual areas, with increased activity for indistinct stimuli. In a second experiment, we used the same stimuli to test whether our results depended on the participants' task. We found task-independent bilateral hippocampal activation in response to indistinct motion stimuli. For both experiments, psychophysiological interaction analysis revealed a coupling from posterior hippocampus to dorsal visuospatial and ventral visual object processing areas when viewing indistinct stimuli. These results indicate a close functional link between stimulus-dependent perceptual and mnemonic processes. The observed pattern of hippocampal functional connectivity, in the absence of an explicit memory task, suggests that cortical–hippocampal networks are recruited when visual stimuli are temporally uncertain and do not immediately reveal a clear meaning.