Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-2 of 2
Research Methods
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (7): 1081–1088.
Published: 01 July 2007
Abstract
View article
PDF
Measures of brain activation (e.g., changes in scalp electrical potentials) have become the most popular method for inferring brain function. However, examining brain disruption (e.g., examining behavior after brain injury) can complement activation studies. Activation techniques identify regions involved with a task, whereas disruption techniques are able to discover which regions are crucial for a task. Voxel-based lesion mapping can be used to determine relationships between behavioral measures and the location of brain injury, revealing the function of brain regions. Lesion mapping can also correlate the effectiveness of neurosurgery with the location of brain resection, identifying optimal surgical targets. Traditionally, voxel-based lesion mapping has employed the chi-square test when the clinical measure is binomial and the Student's t test when measures are continuous. Here we suggest that the Liebermeister approach for binomial data is more sensitive than the chi-square test. We also suggest that a test described by Brunner and Munzel is more appropriate than the t test for nonbinomial data because clinical and neuropsychological data often violate the assumptions of the t test. We test our hypotheses comparing statistical tests using both simulated data and data obtained from a sample of stroke patients with disturbed spatial perception. We also developed software to implement these tests (MRIcron), made freely available to the scientific community.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (7): 1067–1080.
Published: 01 July 2007
Abstract
View article
PDF
Lesion analysis in brain-injured populations complements what can be learned from functional neuroimaging. Voxel-based approaches to mapping lesion-behavior correlations in brain-injured populations are increasingly popular, and have the potential to leverage image analysis methods drawn from functional magnetic resonance imaging. However, power is a major concern for these studies, and is likely to vary regionally due to the distribution of lesion locations. Here, we outline general considerations for voxel-based methods, characterize the use of a nonparametric permutation test adapted from functional neuroimaging, and present methods for regional power analysis in lesion studies.