Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-5 of 5
Reviews
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (11): 1672–1687.
Published: 01 November 2016
FIGURES
Abstract
View article
PDF
Previous research has shown that when two color-defined target objects appear in rapid succession at different locations, attention is deployed independently and in parallel to both targets. This study investigated whether this rapid simultaneous attentional target selection mechanism can also be employed in tasks where targets are defined by a different visual feature (shape) or when alphanumerical category is the target selection attribute. Two displays that both contained a target and a nontarget object on opposite sides were presented successively, and the SOA between the two displays was 100, 50, 20, or 10 msec in different blocks. N2pc components were recorded to both targets as a temporal marker of their attentional selection. When observers searched for shape-defined targets (Experiment 1), N2pc components to the two targets were equal in size and overlapped in time when the SOA between the two displays was short, reflecting two parallel shape-guided target selection processes with their own independent time course. Essentially the same temporal pattern of N2pc components was observed when alphanumerical category was the target-defining attribute (Experiment 2), demonstrating that the rapid parallel attentional selection of multiple target objects is not restricted to situations where the deployment of attention can be guided by elementary visual features but that these processes can even be employed in category-based attentional selection tasks. These findings have important implications for our understanding of the cognitive and neural basis of top–down attentional control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (11): 1651–1671.
Published: 01 November 2016
FIGURES
| View All (7)
Abstract
View article
PDF
Inhibitory control such as active selective response inhibition is currently a major topic in cognitive neuroscience. Here we analyze the shape of behavioral RT and accuracy distributions in a visual masked priming paradigm. We employ discrete time hazard functions of response occurrence and conditional accuracy functions to study what causes the negative compatibility effect (NCE)—faster responses and less errors in inconsistent than in consistent prime target conditions—during the time course of a trial. Experiment 1 compares different mask types to find out whether response-relevant mask features are necessary for the NCE. After ruling out this explanation, Experiment 2 manipulates prime mask and mask target intervals to find out whether the NCE is time-locked to the prime or to the mask. We find that (a) response conflicts in inconsistent prime target conditions are locked to target onset, (b) positive priming effects are locked to prime onset whereas the NCE is locked to mask onset, (c) active response inhibition is selective for the primed response, and (d) the type of mask has only modulating effects. We conclude that the NCE is neither caused by automatic self-inhibition of the primed response due to backward masking nor by updating response-relevant features of the mask, but by active mask-triggered selective inhibition of the primed response. We discuss our results in light of a recent computational model of the role of the BG in response gating and executive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (12): 2125–2136.
Published: 01 December 2008
Abstract
View article
PDF
The superior temporal sulcus (STS) is the chameleon of the human brain. Several research areas claim the STS as the host brain region for their particular behavior of interest. Some see it as one of the core structures for theory of mind. For others, it is the main region for audiovisual integration. It plays an important role in biological motion perception, but is also claimed to be essential for speech processing and processing of faces. We review the foci of activations in the STS from multiple functional magnetic resonance imaging studies, focusing on theory of mind, audiovisual integration, motion processing, speech processing, and face processing. The results indicate a differentiation of the STS region in an anterior portion, mainly involved in speech processing, and a posterior portion recruited by cognitive demands of all these different research areas. The latter finding argues against a strict functional subdivision of the STS. In line with anatomical evidence from tracer studies, we propose that the function of the STS varies depending on the nature of network coactivations with different regions in the frontal cortex and medial-temporal lobe. This view is more in keeping with the notion that the same brain region can support different cognitive operations depending on task-dependent network connections, emphasizing the role of network connectivity analysis in neuroimaging.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (5): 762–778.
Published: 01 May 2008
Abstract
View article
PDF
The phonological loop system of Baddeley and colleagues' Working Memory model is a major accomplishment of the modern era of cognitive psychology. It was one of the first information processing models to make an explicit attempt to accommodate both traditional behavioral data and the results of neuropsychological case studies in an integrated theoretical framework. In the early and middle 1990s, the purview of the phonological loop was expanded to include the emerging field of functional brain imaging. The modular and componential structure of the phonological loop seemed to disclose a structure that might well be transcribed, intact, onto the convolutions of the brain. It was the phonological store component, however, with its simple and modular quality, that most appealed to the neuroimaging field as the psychological “box” that might most plausibly be located in the brain. Functional neuroimaging studies initially designated regions in the parietal cortex as constituting the “neural correlate” of the phonological store, whereas later studies pointed to regions in the posterior temporal cortex. In this review, however, we argue the phonological store as a theoretical construct does not precisely correspond to a single, functionally discrete, brain region. Rather, converging evidence from neurology, cognitive psychology, and functional neuroimaging argue for a reconceptualization of phonological short-term memory as emerging from the integrated action of the neural processes that underlie the perception and production of speech.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (5): 751–761.
Published: 01 May 2008
Abstract
View article
PDF
Response inhibition refers to the suppression of actions that are inappropriate in a given context and that interfere with goal-driven behavior. Studies using a range of methodological approaches have implicated executive control processes mediated by frontal-subcortical circuits as being critical to response inhibition; however, localization within the frontal lobe has been inconsistent. In this review, we present evidence from behavioral, lesion, neuroimaging, electrophysiology, and neurological population studies. The findings lay the foundation for a construct in which response inhibition is akin to response selection, such that pre-SMA circuits are critical to selection of appropriate behavior, including both selecting to engage appropriate motor responses and selecting to withhold (inhibit) inappropriate motor responses. Recruitment of additional prefrontal and posterior cortical circuits, necessary to guide response selection, varies depending on the cognitive and behavioral demands of the task.