Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-5 of 5
Special Focus: From Prediction Error to Control: Neurobiological and Computational Accounts of Prefrontal Cortex. These papers were presented at the Cognitive Neuroscience Society meeting in New York City, April 2016.
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (10): 1674–1683.
Published: 01 October 2017
FIGURES
Abstract
View article
PDF
pFC is generally regarded as a region critical for abstract reasoning and high-level cognitive behaviors. As such, it has become the focus of intense research involving a wide variety of subdisciplines of neuroscience and employing a diverse range of methods. However, even as the amount of data on pFC has increased exponentially, it appears that progress toward understanding the general function of the region across a broad array of contexts has not kept pace. Effects observed in pFC are legion, and their interpretations are generally informed by a particular perspective or methodology with little regard with how those effects may apply more broadly. Consequently, the number of specific roles and functions that have been identified makes the region a very crowded place indeed and one that appears unlikely to be explained by a single general principle. In this theoretical article, we describe how the function of large portions of pFC can be accommodated by a single explanatory framework based on the computation and manipulation of error signals and how this framework may be extended to account for additional parts of pFC.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (10): 1646–1655.
Published: 01 October 2017
FIGURES
| View All (6)
Abstract
View article
PDF
Human learning is highly efficient and flexible. A key contributor to this learning flexibility is our ability to generalize new information across contexts that we know require the same behavior and to transfer rules to new contexts we encounter. To do this, we structure the information we learn and represent it hierarchically as abstract, context-dependent rules that constrain lower-level stimulus–action–outcome contingencies. Previous research showed that humans create such structure even when it is not needed, presumably because it usually affords long-term generalization benefits. However, computational models predict that creating structure is costly, with slower learning and slower RTs. We tested this prediction in a new behavioral experiment. Participants learned to select correct actions for four visual patterns, in a setting that either afforded (but did not promote) structure learning or enforced nonhierarchical learning, while controlling for the difficulty of the learning problem. Results replicated our previous finding that healthy young adults create structure even when unneeded and that this structure affords later generalization. Furthermore, they supported our prediction that structure learning incurred a major learning cost and that this cost was specifically tied to the effort in selecting abstract rules, leading to more errors when applying those rules. These findings confirm our theory that humans pay a high short-term cost in learning structure to enable longer-term benefits in learning flexibility.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (10): 1684–1698.
Published: 01 October 2017
FIGURES
| View All (6)
Abstract
View article
PDF
Executive control refers to the regulation of cognition and behavior by mental processes and is a hallmark of higher cognition. Most approaches to understanding its mechanisms begin with the assumption that our brains have anatomically segregated and functionally specialized control modules. The modular approach is intuitive: Control is conceptually distinct from basic mental processing, so an organization that reifies that distinction makes sense. An alternative approach sees executive control as self-organizing principles of a distributed organization. In distributed systems, control and controlled processes are colocalized within large numbers of dispersed computational agents. Control then is often an emergent consequence of simple rules governing the interaction between agents. Because these systems are unfamiliar and unintuitive, here we review several well-understood examples of distributed control systems, group living insects and social animals, and emphasize their parallels with neural systems. We then reexamine the cognitive neuroscience literature on executive control for evidence that its neural control systems may be distributed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (10): 1656–1673.
Published: 01 October 2017
FIGURES
| View All (6)
Abstract
View article
PDF
Recent work on the role of the ACC in cognition has focused on choice difficulty, action value, risk avoidance, conflict resolution, and the value of exerting control among other factors. A main underlying question is what are the output signals of ACC, and relatedly, what is their effect on downstream cognitive processes? Here we propose a model of how ACC influences cognitive processing in other brain regions that choose actions. The model builds on the earlier Predicted Response Outcome model and suggests that ACC learns to represent specifically the states in which the potential costs or risks of an action are high, on both short and long timescales. It then uses those cost signals as a basis to bias decisions to minimize losses while maximizing gains. The model simulates both proactive and reactive control signals and accounts for a variety of empirical findings regarding value-based decision-making.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (10): 1633–1645.
Published: 01 October 2017
FIGURES
| View All (4)
Abstract
View article
PDF
Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response–outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338–1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354–2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO model based on hierarchical error prediction, developed to explain MPFC–DLPFC interactions. We derive behavioral predictions that describe how effort and reward information is coded in PFC and how changing the configuration of such environmental information might affect decision-making and task performance involving motivation.