How must n non-overlapping equal circles be packed in a given circle so that the diameter of the circles will be as large as possible? This paper presents an account of this problem and its putative solutions and related configurations in lotus receptacles, classical Japanese mathematics (wasan) and traditional Japanese design. Particular emphasis is placed on the connection between the conjectural solutions of this discrete geometrical problem and the fruit arrangements in the receptacles of lotuses, because in most cases the actual fruit arrangements are identical to the mathematical solutions. As the lotus is an important symbol in Buddhism and lotus decorations are quite common in Japanese Buddhist art, packings of circles in a circle have been represented in Japanese art for centuries.

This content is only available as a PDF.
You do not currently have access to this content.