In the context of parameter estimation and model selection, it is only quite recently that a direct link between the Fisher information and information-theoretic quantities has been exhibited. We give an interpretation of this link within the standard framework of information theory. We show that in the context of population coding, the mutual information between the activity of a large array of neurons and a stimulus to which the neurons are tuned is naturally related to the Fisher information. In the light of this result, we consider the optimization of the tuning curves parameters in the case of neurons responding to a stimulus represented by an angular variable.

This content is only available as a PDF.
You do not currently have access to this content.