We present two methods for nonuniformity correction of imaging array detectors based on neural networks; both exploit image properties to supply lack of calibrations and maximize the entropy of the output. The first method uses a self-organizing net that produces a linear correction of the raw data with coefficients that adapt continuously. The second method employs a kind of contrast equalization curve to match pixel distributions. Our work originates from silicon detectors, but the treatment is general enough to be applicable to many kinds of array detectors like those used in infrared imaging or in high-energy physics.

This content is only available as a PDF.
You do not currently have access to this content.