A widely used class of models for stochastic systems is hidden Markov models. Systems that can be modeled by hidden Markov models are a proper subclass of linearly dependent processes, a class of stochastic systems known from mathematical investigations carried out over the past four decades. This article provides a novel, simple characterization of linearly dependent processes, called observable operator models. The mathematical properties of observable operator models lead to a constructive learning algorithm for the identification of linearly dependent processes. The core of the algorithm has a time complexity of O (N + nm3), where N is the size of training data, n is the number of distinguishable outcomes of observations, and m is model state-space dimension.

This content is only available as a PDF.
You do not currently have access to this content.