Knowledge about the distribution of a statistical estimator is important for various purposes, such as the construction of confidence intervals for model parameters or the determination of critical values of tests. A widely used method to estimate this distribution is the so-called bootstrap, which is based on an imitation of the probabilistic structure of the data-generating process on the basis of the information provided by a given set of random observations. In this article we investigate this classical method in the context of artificial neural networks used for estimating a mapping from input to output space. We establish consistency results for bootstrap estimates of the distribution of parameter estimates.

This content is only available as a PDF.
You do not currently have access to this content.