The best-known decomposition schemes of multiclass learning problems are one per class coding (OPC) and error-correcting output coding (ECOC). Both methods perform a prior decomposition, that is, before training of the classifier takes place. The impact of output codes on the inferred decision rules can be experienced only after learning. Therefore, we present a novel algorithm for the code design of multiclass learning problems. This algorithm applies a maximum-likelihood objective function in conjunction with the expectation-maximization (EM) algorithm. Minimizing the augmented objective function yields the optimal decomposition of the multiclass learning problem in two-class problems. Experimental results show the potential gain of the optimized output codes over OPC or ECOC methods.

This content is only available as a PDF.
You do not currently have access to this content.