Abstract
What is the difference between the efferent spike train of a neuron with a large soma versus that of a neuron with a small soma? We propose an analytical method called the decoupling approach to tackle the problem. Two limiting cases—the soma is much smaller than the dendrite or vica versa—are theoretically investigated. For both the two-compartment integrate-and-fire model and Pinsky-Rinzel model, we show, both theoretically and numerically, that the smaller the soma is, the faster and the more irregularly the neuron fires. We further conclude, in terms of numerical simulations, that cells falling in between the two limiting cases form a continuum with respect to their firing properties (mean firing time and coefficient of variation of inter-spike intervals).