Self-organization is one of fundamental brain computations for forming efficient representations of information. Experimental support for this idea has been largely limited to the developmental and reorganizational formation of neural circuits in the sensory cortices. We now propose that self-organization may also play an important role in short-term synaptic changesinreward-drivenvoluntarybehaviors.Ithasrecentlybeenshown that many neurons in the basal ganglia change their sensory responses flexibly in relation to rewards. Our computational model proposes that the rapid changes in striatal projection neurons depend on the subtle balance between the Hebb-type mechanisms of excitation and inhibition, which are modulated by reinforcement signals. Simulations based on the model are shown to produce various types of neural activity similar to those found in experiments.

This content is only available as a PDF.
You do not currently have access to this content.