We discuss the relation betweenɛ-support vector regression (ɛ-SVR) and v-support vector regression (v-SVR). In particular, we focus on properties that are different from those of C-support vector classification (C-SVC) andv-support vector classification (v-SVC). We then discuss some issues that do not occur in the case of classification: the possible range of ɛ and the scaling of target values. A practical decomposition method forv-SVR is implemented, and computational experiments are conducted. We show some interesting numerical observations specific to regression.

This content is only available as a PDF.
You do not currently have access to this content.