We describe a model of short-term synaptic depression that is derived from a circuit implementation. The dynamics of this circuit model is similar to the dynamics of some theoretical models of short-term depression except that the recovery dynamics of the variable describing the depression is nonlinear and it also depends on the presynaptic frequency. The equations describing the steady-state and transient responses of this synaptic model are compared to the experimental results obtained from a fabricated silicon network consisting of leaky integrate-and-fire neurons and different types of short-term dynamic synapses. We also show experimental data demonstrating the possible computational roles of depression. One possible role of a depressing synapse is that the input can quickly bring the neuron up to threshold when the membrane potential is close to the resting potential.

You do not currently have access to this content.