In order to analyze the stochastic property of multilayered perceptrons or other learning machines, we deal with simpler models and derive the asymptotic distribution of the least-squares estimators of their parameters. In the case where a model is unidentified, we show different results from traditional linear models: the well-known property of asymptotic normality never holds for the estimates of redundant parameters.

This content is only available as a PDF.
You do not currently have access to this content.