Abstract
By employing the L1 or L∞ norms in maximizing margins, support vector machines (SVMs) result in a linear programming problem that requires a lower computational load compared to SVMs with the L2 norm. However, how the change of norm affects the generalization ability of SVMs has not been clarified so far except for numerical experiments. In this letter, the geometrical meaning of SVMs with the Lp norm is investigated, and the SVM solutions are shown to have rather little dependency on p.
This content is only available as a PDF.
© 2005 Massachusetts Institute of Technology
2005
You do not currently have access to this content.