Abstract
In this letter we describe a hippocampo-cortical model of spatial processing and navigation based on a cascade of increasingly complex associative processes that are also relevant for other hippocampal functions such as episodic memory. Associative learning of different types and the related pattern encoding-recognition take place at three successive levels: (1) an object location level, which computes the landmarks from merged multimodal sensory inputs in the parahippocampal cortices; (2) a subject location level, which computes place fields by combination of local views and movement-related information in the entorhinal cortex; and (3) a spatiotemporal level, which computes place transitions from contiguous place fields in the CA3-CA1 region, which form building blocks for learning temporospatial sequences.
At the cell population level, superficial entorhinal place cells encode spatial, context-independent maps as landscapes of activity; populations of transition cells in the CA3-CA1 region encode context-dependent maps as sequences of transitions, which form graphs in prefrontal-parietal cortices. The model was tested on a robot moving in a real environment; these tests produced results that could help to interpret biological data.
Two different goal-oriented navigation strategies were displayed depend-ing on the type of map used by the system.
Thanks to its multilevel, multimodal integration and behavioral imple-mentation, the model suggests functional interpretations for largely un-accounted structural differences between hippocampo-cortical systems. Further, spatiotemporal information, a common denominator shared by several brain structures, could serve as a cognitive processing frame and a functional link, for example, during spatial navigation and episodic memory, as suggested by the applications of the model to other domains, temporal sequence learning and imitation in particular.