Sparse nonlinear classification and regression models in reproducing kernel Hilbert spaces (RKHSs) are considered. The use of Mercer kernels and the square loss function gives rise to an overdetermined linear least-squares problem in the corresponding RKHS. When we apply a greedy forward selection scheme, the least-squares problem may be solved by an order-recursive update of the pseudoinverse in each iteration step. The computational time is linear with respect to the number of the selected training samples.

This content is only available as a PDF.
You do not currently have access to this content.