Abstract
This letter presents a general parametric divergence measure. The metric includes as special cases quadratic error and Kullback-Leibler divergence. A parametric generalization of the two different multiplicative update rules for nonnegative matrix factorization by Lee and Seung (2001) is shown to lead to locally optimal solutions of the nonnegative matrix factorization problem with this new cost function. Numeric simulations demonstrate that the new update rule may improve the quadratic distance convergence speed. A proof of convergence is given that, as in Lee and Seung, uses an auxiliary function known from the expectation-maximization theoretical framework.
This content is only available as a PDF.
© 2007 Massachusetts Institute of Technology
2007
You do not currently have access to this content.