We propose a model of intrinsic plasticity for a continuous activation model neuron based on information theory. We then show how intrinsic and synaptic plasticity mechanisms interact and allow the neuron to discover heavy-tailed directions in the input. We also demonstrate that intrinsic plasticity may be an alternative explanation for the sliding threshold postulated in the BCM theory of synaptic plasticity. We present a theoretical analysis of the interaction of intrinsic plasticity with different Hebbian learning rules for the case of clustered inputs. Finally, we perform experiments on the “bars” problem, a popular nonlinear independent component analysis problem.

This content is only available as a PDF.
You do not currently have access to this content.