Abstract
Recent experimental findings (Gray et al. 1989; Eckhorn et al. 1988) seem to indicate that rapid oscillations and phase-lockings of different populations of cortical neurons play an important role in neural computations. In particular, global stimulus properties could be reflected in the correlated firing of spatially distant cells. Here we describe how simple coupled oscillator networks can be used to model the data and to investigate whether useful tasks can be performed by oscillator architectures. A specific demonstration is given for the problem of preattentive texture discrimination. Texture images are convolved with different sets of Gabor filters feeding into several corresponding arrays of coupled oscillators. After a brief transient, the dynamic evolution in the arrays leads to a separation of the textures by a phase labeling mechanism. The importance of noise and of long range connections is briefly discussed.