Recent in vitro data show that neurons respond to input variance with varying sensitivities. Here we demonstrate that Hodgkin-Huxley (HH) neurons can operate in two computational regimes: one that is more sensitive to input variance (differentiating) and one that is less sensitive (integrating). A boundary plane in the 3D conductance space separates these two regimes. For a reduced HH model, this plane can be derived analytically from the V nullcline, thus suggesting a means of relating biophysical parameters to neural computation by analyzing the neuron's dynamical system.

This content is only available as a PDF.
You do not currently have access to this content.