Abstract
We introduce a new supervised learning rule for the tempotron task: the binary classification of input spike trains by an integrate-and-fire neuron that encodes its decision by firing or not firing. The rule is based on the gradient of a cost function, is found to have enhanced performance, and does not rely on a specific reset mechanism in the integrate-and-fire neuron.
Issue Section:
Note
© 2008 Massachusetts Institute of Technology
2008
You do not currently have access to this content.