The attractiveness of human faces can be predicted with a high degree of accuracy if we represent the faces as feature vectors and compute their relative distances from two prototypes: the average of attractive faces and the average of unattractive faces. Moreover, the degree of attractiveness, defined in terms of the relative distance, exhibits a high degree of correlation with the average rating scores given by human assessors. These findings motivate a bi-prototype theory that relates facial attractiveness to the averages of attractive and unattractive faces rather than the average of all faces, as previously hypothesized by some researchers.

You do not currently have access to this content.