Newton's method for solving the matrix equation runs up against the fact that its zeros are not isolated. This is due to a symmetry of F by the action of the orthogonal group. We show how differential-geometric techniques can be exploited to remove this symmetry and obtain a “geometric” Newton algorithm that finds the zeros of F. The geometric Newton method does not suffer from the degeneracy issue that stands in the way of the original Newton method.

You do not currently have access to this content.