Abstract
Experience-dependent synaptic plasticity characterizes the adaptable brain and is believed to be the cellular substrate for perceptual learning. A chemical agent such as gamma-aminobutyric acid (GABA) is known to affect synaptic alteration, perhaps gating perceptual learning. We examined whether and how ambient (extrasynaptic) GABA affects experience-dependent synaptic alteration. A cortical neural network model was simulated. Transporters on GABAergic interneurons regulate ambient GABA levels around their axonal target neurons by removing GABA from (forward transport) or releasing it into (reverse transport) the extracellular space. The ambient GABA provides neurons with tonic inhibitory currents by activating extrasynaptic GABAa receptors. During repeated exposures to the same stimulus, we modified the synaptic connection strength between principal cells in a spike-timing-dependent manner. This modulated the activity of GABAergic interneurons, and reduced or augmented ambient GABA concentration. Reduction in ambient GABA concentration led to slight depolarization (less than several millivolts) in ongoing-spontaneous membrane potential. This was a subthreshold neuronal behavior because ongoing-spontaneous spiking activity remained almost unchanged. The ongoing-spontaneous subthreshold depolarization improved a suprathreshold neuronal response. If the stimulus was long absent for perceptual learning, augmentation of ambient GABA concentration took place and the ongoing-spontaneous subthreshold depolarization was depressed. We suggest that a perceptual memory trace could be left in neuronal circuitry as an ongoing-spontaneous subthreshold membrane depolarization, which would allow that memory to be accessed easily afterward, whereas a trace of a memory that has not recently been retrieved fades away when the ongoing-spontaneous subthreshold membrane depolarization built by previous perceptual learning is depressed. This would lead that memory to be accessed with some difficulty. In the brain, ambient GABA, whose level could be regulated by transporter may have an important role in leaving memory trace for perceptual learning.