In a biological nervous system, astrocytes play an important role in the functioning and interaction of neurons, and astrocytes have excitatory and inhibitory influence on synapses. In this work, with this biological inspiration, a class of computation devices that consist of neurons and astrocytes is introduced, called spiking neural P systems with astrocytes (SNPA systems). The computation power of SNPA systems is investigated. It is proved that SNPA systems with simple neurons (all neurons have the same rule, one per neuron, of a very simple form) are Turing universal in both generative and accepting modes. If a bound is given on the number of spikes present in any neuron along a computation, then the computation power of SNPA systems is diminished. In this case, a characterization of semilinear sets of numbers is obtained.

You do not currently have access to this content.