Models of cortical neuronal circuits commonly depend on inhibitory feedback to control gain, provide signal normalization, and selectively amplify signals using winner-take-all (WTA) dynamics. Such models generally assume that excitatory and inhibitory neurons are able to interact easily because their axons and dendrites are colocalized in the same small volume. However, quantitative neuroanatomical studies of the dimensions of axonal and dendritic trees of neurons in the neocortex show that this colocalization assumption is not valid. In this letter, we describe a simple modification to the WTA circuit design that permits the effects of distributed inhibitory neurons to be coupled through synchronization, and so allows a single WTA to be distributed widely in cortical space, well beyond the arborization of any single inhibitory neuron and even across different cortical areas. We prove by nonlinear contraction analysis and demonstrate by simulation that distributed WTA subsystems combined by such inhibitory synchrony are inherently stable. We show analytically that synchronization is substantially faster than winner selection. This circuit mechanism allows networks of independent WTAs to fully or partially compete with other.

You do not currently have access to this content.