The analysis of natural images with independent component analysis (ICA) yields localized bandpass Gabor-type filters similar to receptive fields of simple cells in visual cortex. We applied ICA on a subset of patches called position-centered patches, selected for forming a translation-invariant representation of small patches. The resulting filters were qualitatively different in two respects. One novel feature was the emergence of filters we call double-Gabor filters. In contrast to Gabor functions that are modulated in one direction, double-Gabor filters are sinusoidally modulated in two orthogonal directions. In addition the filters were more extended in space and frequency compared to standard ICA filters and better matched the distribution in experimental recordings from neurons in primary visual cortex. We further found a dual role for double-Gabor filters as edge and texture detectors, which could have engineering applications.

You do not currently have access to this content.