A parallel dual matrix method that considers all cases of numerical relations between a mixing matrix and a separating matrix is proposed in this letter. Different constrained terms are used to construct cost function for every subalgorithm. These constrained terms reflect numerical relation. Therefore, a number of undesired solutions are excluded, the search region is reduced, and the convergence efficiency of the algorithm is ultimately improved. Moreover, any parallel subalgorithm is proven to converge to a desired separating matrix only if its cost function converges to zero. Computer simulations indicate that the algorithm efficiently performs blind signal separation.

You do not currently have access to this content.