Abstract
We consider the problem of multiclass adaptive classification for brain-computer interfaces and propose the use of multiclass pooled mean linear discriminant analysis (MPMLDA), a multiclass generalization of the adaptation rule introduced by Vidaurre, Kawanabe, von Bünau, Blankertz, and Müller (2010) for the binary class setting. Using publicly available EEG data sets and tangent space mapping (Barachant, Bonnet, Congedo, & Jutten, 2012) as a feature extractor, we demonstrate that MPMLDA can significantly outperform state-of-the-art multiclass static and adaptive methods. Furthermore, efficient learning rates can be achieved using data from different subjects.
Issue Section:
Letters
© 2014 Massachusetts Institute of Technology
2014
You do not currently have access to this content.