In this letter, we provide a stochastic analysis of, and supporting simulation data for, a stochastic model of the generation of gamma bursts in local field potential (LFP) recordings by interacting populations of excitatory and inhibitory neurons. Our interest is in behavior near a fixed point of the stochastic dynamics of the model. We apply a recent limit theorem of stochastic dynamics to probe into details of this local behavior, obtaining several new results. We show that the stochastic model can be written in terms of a rotation multiplied by a two-dimensional standard Ornstein-Uhlenbeck (OU) process. Viewing the rewritten process in terms of phase and amplitude processes, we are able to proceed further in analysis. We demonstrate that gamma bursts arise in the model as excursions of the modulus of the OU process. The associated pair of stochastic phase and amplitude processes satisfies their own pair of stochastic differential equations, which indicates that large phase slips occur between gamma bursts. This behavior is mirrored in LFP data simulated from the original model. These results suggest that the rewritten model is a valid representation of the behavior near the fixed point for a wide class of models of oscillatory neural processes.

You do not currently have access to this content.