This letter investigates the characteristics of the complex-valued neuron model with parameters represented by polar coordinates (called polar variable complex-valued neuron). The parameters of the polar variable complex-valued neuron are unidentifiable. The plateau phenomenon can occur during learning of the polar variable complex-valued neuron. Furthermore, computer simulations suggest that a single polar variable complex-valued neuron has the following characteristics in the case of using the steepest gradient-descent method with square error: (1) unidentifiable parameters (singular points) degrade the learning speed and (2) a plateau can occur during learning. When the weight is attracted to the singular point, the learning tends to become stuck. However, computer simulations also show that the steepest gradient-descent method with amplitude-phase error and the complex-valued natural gradient method could reduce the effects of the singular points. The learning dynamics near singular points depends on the error functions and the training algorithms used.

You do not currently have access to this content.