In this letter, we consider a model of Cohen-Grossberg neural networks with piecewise constant argument of generalized type and impulses. Sufficient conditions ensuring the existence and uniqueness of solutions are obtained. Based on constructing a new differential inequality with piecewise constant argument and impulse and using the Lyapunov function method, we derive sufficient conditions ensuring the global exponential stability of equilibrium point, with approximate exponential convergence rate. An example is given to illustrate the validity and advantage of the theoretical results.

You do not currently have access to this content.